쵼쥬 2021. 10. 5. 14:01

다이나믹 프로그래밍(DP)

 

  • 메모리를 적절히 사용하여 수행 시간 효율성을 비약적으로 향상시키는 방법
  • 이미 계산된 결과(작은 문제)는 별도의 메로리 영역에 저장
    • Top-down
    • Bottom-up

 

다음 조건을 만족할 때 사용가능

  • 최적 부분 구조
    • 큰문제를작은 문제로 나눌 수 있으며 작은 문제의 답을 모아서 큰 문제를 해결할 수 있다.
  • 중복되는 부분 문제
    • 동일한 작은 문제를 반복적으로 해결해야 한다.

 

예) 피보나치 수열

 

Top-down으로 구현한 피보나치 (재귀)

import java.util.*;

public class Main {

    // 한 번 계산된 결과를 메모이제이션(Memoization)하기 위한 배열 초기화
    public static long[] d = new long[100];

    // 피보나치 함수(Fibonacci Function)를 재귀함수로 구현 (탑다운 다이나믹 프로그래밍)
    public static long fibo(int x) {
        // 종료 조건(1 혹은 2일 때 1을 반환)
        if (x == 1 || x == 2) {
            return 1;
        }
        // 이미 계산한 적 있는 문제라면 그대로 반환
        if (d[x] != 0) {
            return d[x];
        }
        // 아직 계산하지 않은 문제라면 점화식에 따라서 피보나치 결과 반환
        d[x] = fibo(x - 1) + fibo(x - 2);
        return d[x];
    }

    public static void main(String[] args) {
        System.out.println(fibo(50));
    }
}

 

Bottom-up

import java.util.*;

public class Main {

    public static long[] d = new long[100];

    public static void main(String[] args) {
        // 첫 번째 피보나치 수와 두 번째 피보나치 수는 1
        d[1] = 1;
        d[2] = 1;
        int n = 50; // 50번째 피보나치 수를 계산

        // 피보나치 함수(Fibonacci Function) 반복문으로 구현(보텀업 다이나믹 프로그래밍)
        for (int i = 3; i <= n; i++) {
            d[i] = d[i - 1] + d[i - 2];
        }
        System.out.println(d[n]);
    }
}